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Introduction 
 The incidence of congestive heart failure (HF) is increasing with epidemic 
proportions, occurring most frequently in patients with structural heart disease resulting 
from myocardial infarction (MI).  The process of cardiac remodeling that provides the 
substrate for HF results from fibrotic scar formation that replaces regions of myocyte 
necrosis.  In addition, surviving myocytes undergo hypertrophy, which may be initially 
beneficial but subsequently transitions to a maladaptive process in which myocytes 
become vulnerable to apoptosis.  The heart dilates due to infarct expansion, with wall 
thinning and dilatation of the ventricle, hyperplasia of fibroblasts, and scar formation, 
which results in changes to its geometry and loss of contractile function.1  

Recently, mitotic cardiomyocytes and endogenous cardiac stem cells have been 
identified within the mammilian heart 2-4 suggesting that the heart is not a terminally 
differentiated organ.  However, it is evident that these endogenous repair mechanisms are 
insufficient to allow a complete structural and functional recovery of the heart from a MI.  
Cellular regenerative approaches hold great promise to prevent remodeling and 
progression to HF in ischemically damaged hearts which has resulted in two closely 
related avenues of research.  One approach has focused on the biology of endogenous 
stem or precursor cells that reside in the adult heart 5;6.  Other researchers have used a 
variety of exogenous progenitor cells and stem cells as transplants into regions of 
ischemic damaged myocardium.  In experimental models the cell types which have been 
investigated include fetal and neonatal cardiomyocytes, embryonic stem cell derived 
myocytes, tissue engineered contractile grafts, skeletal myoblasts, several cell types 
derived from adult bone marrow, and cardiac stem cells 3;7-15.  This approach termed, 
cellular cardiomyoplasty 16;17, is currently under active investigation in large animal 
models, and has already prompted clinical trials 16;18-21.  
  
Role of Non-Invasive MRI for Assessment of Cell Therapy  

Imaging is playing an important role in assessing the myocardial response to stem 
cell therapy. The correlation of tissue specimen, allowing cellular and molecular 
characterization, with noninvasive imaging of myocardial function, viability, perfusion 
and cell tracking is the foundation to elucidate the effects of any novel cell therapy 
However, it is critical to assess the efficacy regenerative therapy by having the ability to 
image tissues within the heart at various time-points.  

It is essential to determine if regenerated tissue is indeed functional i.e. does the 
new tissue contract with the rest of the heart or is non-contractile and mechanically 
uncoupled from the rest of the heart, in which case it may actually be detrimental to 
cardiac function. 
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In experimental animal studies implantation of cells such as bone marrow derived 
mesenchymal stem cells (MSC) appears to restore the function of the damaged heart and 
decrease necrotic tissue. Whether they do so by generating actively and 
electromechanically coupled myocardium or by passive effects on the composition of the 
evolving scar remains unknown.  Some groups advocate that these cells are not 
contractile, and indeed there is a possibility that new viable tissue functions to decrease 
myocardial wall tension at the infarcted region, thereby improving diastolic function and 
enhancing global cardiac function. MRI technology has  successfully been used to 
address these important issues in a clinical relevant swine models.22 

Moreover, MRI has been applied in most clinical trials to determine the effect of 
cell therapy. The evaluation global contractility and endsystolic volume have been 
commonly used as study endpoints14;20;21. 
 
MRI is an ideal modality to assess regenerative cell therapy as it offers a number of 
quantitative measurements that are considered to be gold standard metrics a detailed 
below:  
 

Global Left Ventricular Function 
The ability of MRI to provide global function assessment in a number of 
pathophysiologic states has been well documented.  Global function quantities, 
such as ventricular mass, ventricular volume, and ejection fraction can be 
obtained by image segmentation and definition of contours used along with 
Simpson’s rule to calculate the LV volume at various cardiac phases.  The volume 
of the cavity at end-systole and end-diastole (ESV and EDV) is determined based 
on the largest and smallest volumes.  By measuring the percentage change in 
volume at end-systole relative to end-diastole, the ejection fraction of the heart is 
then measured (EF=100*(EDV-ESV)/EDV %).   

 
Regional Function - MR Myocardial Tagging  
MRI tagging is a technique that places non-physical markers non-invasively 
inside the tissue by manipulating the magnetization of the tissue using special 
encoding pulses 23;24.  These markers, called tags, appear in the acquired images 
as dark lines.  These tags are generated by modulating the magnetization of the 
heart and deform with the motion of the myocardium during the cardiac cycle. In 
addition to simplifying the qualitative assessment of cardiac deformation, these 
tags can be used to quantify dynamic strain during the cardiac cycle.  Significant 
local strains include circumferential shortening, radial thickening, and 
longitudinal compression.  
 

Harmonic Phase (HARP) Analysis of Myocardial Tagging Data:  While detailed 
3D strain analysis of a cell treated myocardium segment is an excellent method to 
monitor improvements in regional function over time, it involves extensive post-
processing time and thereby limits the application MRI tagging.  A new method to 
analyze tagged data called harmonic phase (HARP) imaging.  HARP measures the 
motion from tagged MR images by filtering certain regions in the k-space of the 
images called the harmonic peaks.  The resulting image is a complex image which 
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can be decomposed into magnitude and phase, called harmonic magnitude and 
harmonic phase, respectively. The harmonic magnitude image is related to the 
underlying anatomy of the heart, which can be used for segmentation by simple 
thresholding, while the phase HARP image is directly related to the motion and 
deformation of the tags and thus the motion of the myocardium.  Additionally, the 
gradients of the HARP images are related to the local strain which is used to 
produce strain maps.  HARP measures local strain of tissue by measuring the tag 
line frequency changes that occur with contraction or stretching of the heart.  
Since the phase of any point in tissue does not change over time, it is possible to 
track the motion of a point simply by determining the position in the images at 
different cardiac phases that satisfy this condition.  It is also possible to track 
multiple points that segment the heart using the HARP tracking method.  A mesh 
that segments the LV into a number of segments can be built at one timeframe—
preferably close to end-systole.  Each of the points that constitute the mesh is 
tracked through the other timeframes.  The mesh, therefore, tracks with the 
motion of the heart and allows measurements of strain and strain rate.  By 
tracking the motion of different regions of the heart using a mesh, the regional 
strains are measured on trajectory of motion.  

HARP analysis can be used to determine peak circumferential negative strain 
(Eccmax) which is used as a primary metric of regional function since this 
parameter most directly reflects maximal myocardial shortening in a selected 
layer of myocardial tissue.  Thus, values of increasing strain (towards positive 
values) reflect relatively dyskinetic or non-contracting myocardial segments. 
Tracking of Eccmax over time provides valuable quantitative information 
regarding the restoration of contractile function in the treated myocardial region. 

 

 
Myocardial Viability Imaging  
Delayed contrast enhanced (DCE) MRI for assessment of myocardial viability has 
been well validated over the past several years and is performed routinely by 
several cardiac MRI centers.  Several studies have demonstrated that MRI 
accurately represents the spatial extent of myocardial cell death and is routinely 
used to perform delayed enhancement MRI in animal models and humans 
following acute and chronic myocardial infarction25.   

The mechanism of myocardial hyper-enhancement in the setting of 
infarction is based on the action of gadolinium-DTPA as an extra-cellular contrast 
agent. In normal myocardium myocytes are densely packed and thus intracellular 
space of the myocytes represents a majority of the total myocardial volume.  In 
the setting of acute infarction, the myocyte membrane integrity is compromised 
and Gd-DTPA is able to diffuse into the intracellular space to greatly increase the 
volume of distribution and result in hyperenhancement.  In the setting of chronic 
infarction, myocytes have been replaced with collagenous scar which increases 
interstitial space and leads to spatially increased gadolinium concentration an 
hyperenhancement.    

The typical pattern of hyper enhancement occurs in patients with prior 
myocardial infarction and thus in those with ischemic HF can be explained by the 
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patho-physiology of ischemia.  Following coronary occlusion, myocardial 
contractile function falls almost immediately throughout the region of ischemia.  
However, little or no cellular necrosis is found until approximately 15 minutes 
after occlusion.  From this point on a ‘wave front’ of necrosis begins in the sub-
endocardium and grows towards the epicardium over the next few hours.  During 
this period the region of ischemia remains the same size, but the infarcted region 
within the ischemic zone increases continuously towards a transmural infarction.   

DCE has been applied in animal model to evaluate MSC therapy 
demonstrating reduction infarct size 22. Furthermore, DCE can determine 
prognosis in patients post-MI, which can be a useful tool to determine the effects 
of cell therapy 

 
 

Perfusion 
 MRI is increasingly applied as an alternative to nuclear medicine assessing 
microcirculation.  Myocardial perfusion imaging using contrast-enhanced first-
pass MRI can obtain whole-heart coverage at a resolution double that of a PET 
scanner and 4 times the resolution of SPECT 26.  MRI first-pass perfusion studies 
can be performed either at rest or under physical or pharmacological stress to 
evaluate the myocardial microcirculation.    

  Clinically, MR perfusion imaging is mainly applied to detect coronary 
artery disease using parameters like coronary flow reserve.  Coronary flow 
reserve, defined as the ratio of coronary flow at maximal vasodilatation compared 
with rest is a guide in clinical applications to the significance of coronary 
narrowing.  Changes in first-pass enhancement in a cardiac segment during  
pharmacologically induced vasodilation is directly proportional to the perfusion 
of that segment 27. 

Both, rest and pharmacological stress perfusion is applied to evaluate stem 
cell therapy in animal models and clinical trials 28.  Infusion of bone marrow 
derived cells showed increased myocardial blood flow in the relevant territories in 
treated patients.  Despite the ongoing controversy which mechanisms underly 
cellular therapy.   Two major functional benefits have emerged from exogenous 
cellular therapy.  One is cardiac regeneration through cell fusion or cell 
differentiation to cardiac phenotypes, which can be evaluated by MRI tagging 
methods as discussed above. The other principal is improvement of 
neovascularization, which has attracted much attention lately.   
Neovascularization and angiogensis, occurs mostly on the level of myocardial 
microcirculation , which is amendable to  MRI perfusion techniques 29 and offers 
the opportunity to study these biological processes.  Indeed,  we recently could 
demonstrate an effect of MSCs therapy on the microcirculation shortly  after cell 
delivery using first pass perfusion MRI 30. 
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Cellular imaging based on MRI technology requires labeling of the target cells.  
Currently, most cellular MRI in vivo labeling strategies have applied iron oxide 
particles, so called ultra-small superparamagnetic iron oxide (SPIO) compounds 
31-33. 

The compound is internalized into the living cell, because surface labels 
may become detached and transferred to other cells.  The great advantage of SPIO 
labeling is that picogram quantities of iron per cell can lead to large hypo-intense 
signals which can easily be visualized on T2* weight images.  Another advantage 
of SPIO labeling is that when the cells are lysed the iron oxide is only taken up by 
phagocytic cells and ultimately recycled in the iron pool thereby preventing to 
damage tissue at the injection side.  However, on the other hand, this is also the 
biggest problem of SPIO labeling because iron particles from degraded cells are 
incorporated by adjacent phagocytic cells.  Thus, hypo-intense artifacts in images 
at later time points after cell delivery may represent cells other that the originally 
labeled ones.  Therefore strict quantification of cell numbers based on the change 
in volume of the hypo-intense signal is difficult to determine.  

 SPIO have been used to verify cell delivery and follow up studies up to 
two months have been performed22;34.  Furthermore, it has been recently 
demonstrated that SPIO labeling does not impair the biological effect of injected 
stem cells35, which might open the opportunity to use this MRI tracking method in 
clinical studies.  
 

 
 
Conclusion 
Cardiac MRI assessment of acute stem therapy provides valuable information regarding 
both the functional response to cell therapy and provides insight into mechanism of 
observed global and functional improvement.  MRI combined with other high resolution 
imaging modalities such as MDCT will be important tools to provide answers for a 
number of unresolved issues surrounding cell therapy in acute myocardial infarction.  
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